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The geodesic approximation

I We have some (possibly reduced) action of the form
S(φ) =

∫
1
2 φ̇

2dDxdt − E (φ).

I It has a continuous set of static solutions χ(~x ; ~c) given by
δE
δφ

∣∣
χ

= 0.

I It follows that E (χ) = E0, a constant independent of ~c .

I We suppose we can approximate dynamical solutions to the
action by φ(~x , t) = χ(~x ; ~c(t)), provided ~̇c is sufficiently small.
These ~c are called collective co-ordinates, hence ‘collective
co-ordinate approximation’.

I Substituting this solution into the action, we get an effective
action: Seff(~c) = gij(~c)ċi ċj − E0, where
gij(~c) =

∫
1
2∂ciχ∂cjχd

Dx .

I This has dynamical equations d
dt (gij(~c)ċj) = 0; geodesics on

the moduli space



Intuitive picture: the Higgs Bobsleigh
Why did we (Nick) come up with this approximation?

I For intuition, consider a finite-dimensional model: a point
moving in the Higgs potential.

I Our ‘field’ is just a complex number: φ = φ1 + iφ2

I Our energy is E (φ) = λ
4 (|φ|2 − h2)2; ‘wine bottle’.

Re(φ)
Im(φ)

V (φ)

I Circle of static solutions: χ(c) = he ic .

I We now look for an approximate dynamical solution of the
form χ(c(t)). Implementing the procedure, we find ċ = const.



Intuitive picture: the Higgs bobsleigh

I What about an exact solution? First rewrite φ in terms of
r = |φ|, α = arg(φ).

I S(φ) = 1
2 (ṙ2 + r2α̇2)− λ

4 (r2 − h2)2

I Euler-Lagrange equations:

−r̈ + r α̇2 − λr(r2 − h2) = 0

d

dt
(r2α̇) = 0 =⇒ r2α̇ = L.

I Looking for a solution where r̈ = 0, we find
λr4(r2 − h2) = L2: solutions exist, with r(t) = h + O(L2).

I We see that the true solution is arbitrarily close to the
geodesic approximation, provided we choose sufficiently small
non-zero ċ .

I Note: the true solution is equal to the approximate solution
plus a small component orthogonal to the moduli space.



Failure of the geodesic approximation: collapse of a
sigma-model lump

Let us now consider axisymmetric solutions of the O(3) sigma
model, described by a field Θ(r) with energy functional

E (Θ) =

∫ ∞
0

(
1

2
Θ′2 +

1

2r2
sin2 Θ

)
rdr

I Solutions given by χ(r ; c) = 2 arctan
(
ck

rk

)
, k integer.

I Geodesic approximation: g(c) =
∫

(∂cχ)2rdr : changing
variable to r ′ = r/c, we see that g(c) is a constant∗.

I It follows that one solution of the geodesic equation is
c(t) = v(t? − t); linear collapse.

I From numerics, we find that real collapse is slower: ċ → 0 as
c → 0.



Motivation: understand collapse of an antiferromagnetic
skyrmion

I Chiral antiferromagnet model: described by Néel vector, n(~x)
(staggered magnetisation).

I Static energy functional basically same as ferromagnet:

E (n) =

∫
1

2
∂in · ∂in + D i · (n × ∂in) + h(1− n2

3)d2x

but unlike ferromagnets, dynamics is second-order.

I Looking at the axisymmetric theory D i = −kei and looking
for axisymmetric solutions, we have

E =

∫ ∞
0

(
1

2
Θ′2 +

1

2r2
sin2 Θ− 2k

r
sin Θ sin2 Θ

2
+ h sin2 Θ

)
rdr+b.t.



Derrick scaling of antiferromagnetic skyrmion
Given a static solution n?(~x), Derrick scaling tells us

E (n?(λ~x)) = H(n?)− kλD(n?) + hλ2U(n?)

Solitons can exist, but they only have a finite barrier to collapse:

Collective co-ordinate approximation: S(λ) ∼ 1
2 λ̇

2 − (−kλ+ hλ2).
If initial kinetic energy is high enough, we get linear collapse. If it
is smaller, the skyrmion rebounds and oscillates.
But numerics does not agree...



Sketch of approach for any 1D moduli space
This is inspired by Bizoń, Ovchinnikov and Sigal’s calculation for
the collapse of an instanton - same core idea, but it relied on
modulus being a scaling symmetry so it could be absorbed into
co-ordinates. Clearer to present general version.
I We look for a solution of the form
φ(x , t) = χ(x ; c(t)) + w(x , c , ċ)
I w ‘orthogonal’ to moduli space: any perturbation that

overlaps with moduli space could be included by changing c .
I By assuming w has no explicit time dependence, we are not

considering ingoing or outgoing radiation.
I Substitute in Euler-Lagrange equation to find equation

relating c̈ , ċ , c and w .
I We can split the E-L into a part parallel to the moduli space,

and a part perpendicular.
I The perpendicular part can in principle be solved for w - then

the parallel part gives a corrected ODE for c(t). (L-S)
I Then expand both c̈ and w in powers of ċ.

I Truncating at O(ċ2), we recover geodesic equation for c(t).
I Quartic order gives first non-trivial correction.



Step 1: Lyapunov-Schmidt decomposition
I Euler-Lagrange equation: ∂2

t φ− L(φ) = 0

I After substituting our ansatz:
ċ2∂2

cχ+ c̈∂cχ+ Lχ︸︷︷︸
Hessian

w + N(w ; x ; c)︸ ︷︷ ︸
nonlinearity

+∂2
t w = 0

I Let us introduce 〈f , g〉 =
∫∞
−∞ f (x)g(x)dx (or∫∞

0 f (r)g(r)rdr ..)

I g(c) = 〈∂cχ, ∂cχ〉. g ′(c) = 2〈∂cχ, ∂2
cχ〉. 〈∂cχ, Lχw〉 = 0.

Parallel

ċ2〈∂cχ, ∂2
cχ〉+ c̈〈∂cχ, ∂cχ〉+ 〈∂cχ,N〉+ 〈∂cχ, ∂2

t w〉 = 0

Perpendicular

ċ2(∂2
cχ)⊥ + Lχw + N⊥ + (∂2

t w)⊥ = 0

First two terms of first equation: geodesic equation for c(t).



Step 2: expansion in powers of ċ
Due to t → −t symmetry, we know that c̈ and w are even
functions of ċ .
I c̈ =

∑
i fi (c)ċ2i

I w =
∑

i ξi (x ; c)ċ2i

∂2
t w will have terms like ∂cξi , ∂

2
c ξi and ∂cξi fj , ξi fj fk - we can

check that all of this enters at higher-order than ċ2i .
At O(ċ2):

〈∂cχ, ∂2
cχ〉+ f1(c)〈∂cχ, ∂cχ〉 = 0 (‖ ∂cχ)

(∂2
cχ)⊥ + Lχξ1 = 0 (⊥ ∂cχ)

I Parallel part tells us f1(c) = − g ′(c)
2g(c) - so that if we truncate

the expansion for c̈ here, we get back the geodesic equation.
I But this geodesic motion generates a perturbation ξ1, which

will enter into the parallel part at quartic order...
I You can check that this iterative procedure goes on forever; fi

and ξi are functions of fj<i and ξj<i .



Step back: geometric picture

χ(c)

∂cχ

(−∂2
cχ)⊥

∂2
cχ

ξ1 = L−1
χ (−∂2

cχ)⊥

I (−∂2
cχ)⊥ represents the direction of ‘centrifugal force’

I Lχ gives the height of the valley around the moduli space
I L−1

χ (−∂2
cχ)⊥ gives direction of leading-order perturbation.

At next order we will see two effects:
I Interaction with cubic nonlinearity
I ‘Figure skater’ effect



Perturbative expansion: quartic order

Let us call the quadratic (in Euler-Lagrange) part of the
nonlinearity a2(x ; c)w2.
Parallel part, O(ċ4):

〈∂cχ, ∂cχ〉f2(c) + 〈∂cχ, ∂2
c ξ1〉+ 5〈∂cχ, ∂cξ1〉f1 + 〈∂cχ, a2ξ

2
1〉 = 0

Now what effect does this have on ODE?

d

dt

(
g(c)ċ2

)
= f2(c)ċ5

Like a friction force, it goes to zero as the speed goes to zero. But
it always acts in the same direction for a given sign of f2(c).
Positive f2(c) slows down decreasing c and speeds up increasing c ;
negative f2(c) does the opposite.



Example 1a: the kink

E (φ) =
∫

1
2φ
′2 + V (φ)dx

I In this model we can compare to exact dynamical solutions
given by Lorentz-boosting the static solution.

I χ(x ; c) = χ0(x − c) - somewhat trivial case where c can be
absorbed into co-ordinates

I g(c) =
∫
χ′2dx is constant∗, g ′(c) = 0 =⇒ f1(c) = 0

I Using the factorisation of Lχ due to the Bogomol’nyi
argument, we can write the inversion explicitly:

L−1
χ f = χ′(x − c)

∫ x 1
χ′(x ′−c)2

∫ x ′
χ′(x ′′ − c)f (x)dx ′′

I We find ξ1(x ; c) = 1
2xχ

′
0(x − c).

I We also find f2(c) = 0, and so c = vt is still a valid solution.

I Lorentz boosted solution χ0(
√

1− v2(x − vt)) can be
expanded in powers of v , and prefactor of v2 agrees with
above.



Example 1b: collapsing lump

E (Θ) =

∫ ∞
0

(
1

2
Θ′2 +

1

2r2
sin2 Θ

)
rdr ; χ(r ; c) = 2 arctan

(
ck

rk

)
.

I As before, g(c) constant, g ′(c) = 0.

I Bogomol’nyi argument means Lχ can be factorised, meaning
we can explicitly find ξ1.

I We find f2(c) = 3
4c ; our first correction to the geodesic

equation is c̈ = 3
4c ċ

4. (Numerical factor unimportant)

I Note that if we if we tried to take solution to geodesic
equation with c = ε(t? − t) and add an ε2 correction, it would
not work.

I On integrating the above, we find ċ ∼ 1√
log(c)

. Speed goes to

zero as c → 0, and behaviour matches numerics.



Finding perturbative corrections to collective co-ordinate
approximation in presence of potential

For a perturbative expansion to make sense, our potential should
go to zero as our speed goes to zero.
We assume ċ(t) = εẏ(t) with ẏ(t) = O(1), and then assume that
our energy is modified from one with a moduli space of static
solutions by a term of O(ε2), leading to a change in the
Euler-Lagrange equations ε2δL(Θ).
We must rephrase expansion of w :

c̈(t) =
∑
i≥1

fi (c ; ẏ)ε2i (1)

w =
∑
i≥1

ξi (r ; c , ẏ)ε2i . (2)

At O(ε2):

〈∂cχ, ∂2
cχ〉ẏ2 + 〈∂cχ, ∂cχ〉f1(c ; ẏ) + 〈∂cχ, δL(χ)〉 = 0 (3)

(∂2
cχ)⊥ẏ

2 + Lχξ1 + (δL(χ))⊥ = 0 (4)

First equation gives back standard motion in presence of potential:

d

dt

(
g(c)ċ2 + ε2U(c)

)
= 0 (5)



Geometric picture

χ(c)

(−∂2
cχ)⊥

δL(χ)

U ′(c) = 〈∂cχ, δL(χ)〉

(δL(χ))⊥

ξ1 = −L−1
χ (ẏ2∂2

cχ+ δL(χ))⊥

Now any change of combinations to the perpendicular force,
nonlinearities or curvature can have effects at the next order.



Quartic order

f1(c ; ẏ) = − g ′(c)

2g(c)
ẏ2 − U ′(c)

g(c)

ξ1 = −L−1
χ (ẏ2∂2

cχ+ δL(χ))⊥

g(c)f2(c , ẏ) + 〈∂cχ, ∂2
c ξ1〉ẏ2 + 2ẏ〈∂cχ, ∂c∂ẏξ1〉f1

+〈∂cχ, ∂cξ1〉f1 + 〈∂cχ, a2ξ
2
1〉 = 0.

We see that f2 will have terms that are constant, quadratic and
quartic in ẏ , each with their own interpretation:

f2(c , ẏ) = f20(c)︸ ︷︷ ︸
corrects U(c)

+ f21(c)ẏ2︸ ︷︷ ︸
corrects metric

+ f22(c)ẏ4︸ ︷︷ ︸
energy source/sink

(6)



Example 2a: the kink in presence of delta-function
potential

E (Θ) =

∫
1

2
Θ′2 + V (Θ) + ε2hδ(x)V (Θ)dx .

The effective potential on the moduli space is U(c) = V (χ(−c))
Will O(ε4) corrections have the kink reflect when it should pass, or
vice versa?

L−1
χ (δL)⊥ = hχ′(x−c)χ′(−c)χ′′(−c)︸ ︷︷ ︸

2V (χ(−c))′

∫ x 1−
∫ x ′

χ′(x ′′ − c)2dx ′′/g

χ′(x ′ − c)2
dx ′

We find modifications to the potential δU(c) which all feature
χ′′(−c) - i.e. the potential does not change at the maximum,
where it matters.
So a single δ-function potential behaves as you’d expect from
CCM - but two at an appropriate distance will not. Spectral walls?



Example 2b: the collapsing antiferromagnetic skyrmion (in
progress)

There’s a catch: the model with potential that we want to expand
about is exactly that for which metric diverges (lump with k = 1.)
Putting aside concerns about a divergent metric, for the
antiferromagnetic skyrmion we get:

c̈ = −k + hac︸ ︷︷ ︸
O(ε2)

+
ċ4

c︸︷︷︸
O(ε4/c)

+O(ε4) (7)

Three regimes:

I |ċ(0)| < v?: periodic motion

I |ċ(0)| = v?: collapse with behaviour c → k
2 (t? − t)2

I |ċ(0)| > v?: ċ → 1√
log(t?−t)

However, we know that in the case without potential, the divergent
metric leads to a different behaviour. Dynamic cutoff? Expand
near model with exponential tails?



Conclusions

I We can include the effects of perturbations off the moduli
space as extra terms in the ODE, that are quartic, sextic etc.
in the velocity of the moduli

I Sometimes the perturbations have a dramatic effect on
solutions, cf. the collapsing lump.

I This method can be extended to include moduli spaces with
potential, provided we know what exact theory we are
expanding around

I The resulting collapse of an antiferromagnetic skyrmion seems
to be fundamentally the same as that of the O(3) sigma
model - but further work needed.



Outlook

I Higher powers of ċ

I Colliding kinks

I Divergent metrics

I Higher-dimensional moduli space, target space, domain

I Spectral walls?

I Small amplitude oscillations around a single static solution
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